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Introduction

This paper summarizes work which is part of an on-going research pro-
15;r1.m at the Army Research Intute. The program, called Mettest--

CX) Methodological Issues in the construction of Criterion-Referenced Tests--
CV is exploring and developing psychometric models for defining test sten-
1-1 dards and test lengths. The focus of this paper is upon a "Bayesian"

model, which gives the probability of correctly classifying an examinee
as a master or as a nonmaster while taking into consideration the test
length and the mastery cut-off score.

Personnel assessment is typically made through the development and
administration of tests, and the evaluation of test scores. The final
desired output of a test for a given examinee is information which allows
us to pinpoint his ability to do whatever is required by an objective.
That is, we observe a test score and must then infer the ability of the
examinee.

In Norm-Referenced Testing, an examinee's score is evaluated with
respect to his position among all of the other scores in the examinee
population. But in Criterion-Referenced Testing his score is evaluated
with respect to 114.s passing or aot passing a particular instructional
objective, independent of the -7c1r3e obtained by others in the examinee
population. A passing score inditates.that he is a "master" of that
particular instructional ohjactives and a failing score indicates that he
is a "nonmaster."

Ideally, if an examinee's score on a test is above the minimal passing
standard, he would be correctly classified as having "mastery ability."
Ability assessment would therefore be based upon 100% correct classifica-
tions. But since we live in a less than ideal world, there will be vari-
ability due to the imperfections in the test construction, psychological

Fre4 variability (forgetting, guessing, individual differences) in the examinee
population, and other unknown sources of error. Hence, sometimes a person
who is really not a master (in the ideal world) will be classified as a

1,440

master on the basis of his test score; and sometimes a person who really
is a master w:11 be unfortunate enough to be classified as a nonmaster.
The following c:hart illustrates these four classification Outcomes.

The views expressed in this paper are those of the
auth-or and do not necessarily imply endorsement

by the U.S. Army.
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Classification Master
Based Upon
Test Score

Nonmaster

True Ability State:

Master Nonnaster

True
positive

False
positive

False
negative

True

negative

In order to approach the ideal classification accuracy, the probability of
a True positive should be much greater than that for a False positive, and
the probability for a True negative should be much greater than that for a
False negative. The classification problem has now been cast into a
decision-making framework, for which "Bayes' Theorem" may be used: we
wish to obtain the probability of an examinee being in the Mastery Ability
state given (conditional upon) his test score. Symbolically, this is
expressed as p(M11T), where M1 refers to the mastery state, and T is the
test store of that specific individual.

An Example Using Bayes' Theorem

Bayes' Theorem is a mathematical expression which allows us to com-
bine information about the quality of the examinee population so as to
produce a probabilistic estimate of mastery for a specific examinee.
This approach will give the most accurate ability estimate for each
examinee by using the fewest number of test items, provided that accurate
estimetes of the "quality parameters" have been made. (A subsequent Pao--
tion of this paper will show exactly how to estimate these quality
parameters from data similar to that which you might have.) First, let's
take a look at the mathematical expression, the estimates that we have to
feed into it, and the output that it gives us:

p(MlIT) = p(TIM1)p(M1)
[p(TIM1)p(M1) + p(T/M2)p(M2)]

Here we assume that the 2 states of nature (maater and nonmaster) are
mutually exclusive and collectively exhaustive, and that T is the test
score which is observed. We also assume that the test is dichotomously
scored. A correct response is denoted "1", an incorrect response is
denoted "0" and the total test score is simply the number of correct
responses. What we seek to find is the term on the left, the probability
that a given student is a master, having been given his test score. In
order to find it, we need to have an estimate of the prior probability of
mastery (p(M1)) in the population of students from Which this :;tudent was
drawn. The prior probability of mastery can be thought of as the pro-
portion of students in the examinee population we think are masters. For
example, if our instruction were very good the prior probability of
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mastery would be high, and most of the students who completed the instruc-
tion should have mastered the objective. The actual number specified for
the prior probability of mastery may be an informed guess based on exper-
ience or it may be based on the empirical results of tests given to pre-
vious classes of similar student ;.

We must also estimate the conditional probability of a certain test
score given that the student who got that socre was a master. For example,
if only one item were administered, the conditional probability of a score
of one correct given that the student was a master is simply the proba-
bility that a master responds correctly. We may estimate this conditional
probability empirically based on previous student groups, or we may pro-
vide a best guess as to how well masters perform, or this conditional
probability may reflect a minimal standard of achievement. We shall show

1
how the p(M T) will vary as a function of the prior expectations of the
tester, num er of test items, and conditional probabilities, p(T1M), after
an example to illustrate the computations.

Suppose that a student chosen at random from a trainee population was
given a criterion-referenced test, and that he passed the test. Given the
results of the test, what is the probability that the studenr is indeed a
master of that particular course of instruction? In order t.o calculate
the probability, we obtain the following information from the educational
expert who administered the CRT: The probability that a master would
obtain a passing score = .90, (p(T/M1) .90); the probability that a
nonmaster would obtain a passing score .05, (p(T1M2) = .05); and the
prior probability of randomly selecting a master from this trainee popu-
lation is equal to .70, that is, we believe :hat 70% of this and similar
previous trainee populations may be assumed to be composed of masters.
Substituting these values into the formula;

p(Ml(T) = .9 x .7
.9 x .7 .05 x .3

which equals .977. Hence, before the test score was available, the
probability that this student was a master was .70, but after a passing
score was observed, the probability that this person is a master has
increased to .977. (The probability of this student's being a nonmaster,
given the same passing score, p(M2 IT), would be equal to 1-.977 or .023).

Methods for Estimating "Quality Parameters" (Prior and Conditional
Probabilities)

This model assumes that background information about students who
previously took the test is available. This background information
should lead to the accurate estimation of parameters that describe the
quality of the examinee population. We need information to estimate the
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prior probability of a randomly selected student being in one of the
assumed mastery ability groups. We also need to be able to estimate
the conditional probability that an examinee from a particular ability
group would get an item right. For purposes of illustration, let's
assume that 100 examinees produced the following distribution of scores
on a five item test:

Number of items
correct

Frequency p(Correct)

5 30 1.0
4 30 .8

3 00 .6

2 10 .4
1 20 .2,

0 10 0.0

For this particular set of data, it seems reasonable to postulate two
ability groups. Note that 60 examinees got either 4 or 5 test items
correct, and that a total of 40 examinees got 0, 1, or 2 items correct.
No one got 3 items correct. Hence, this bimodal distribution of scores
strongly suggests that we may set the prior probability of mastery equal
to .6, and the prior probability of nonmastery equal to .4. Symbolically,
p(M1) = .6, and p(M2) = .4.

We also need to estimate the conditional probability that a correct
response is made to an item, given the particular mastery or ability
state. Symbolically, we seek p(x=11M). There are several ways to com-
pute this parameter value. Unfortunately, each method produces a unique
value.

We could take the average proportion correct for the mastery group.
For the present data, this would produce 30 x 1.0 + 30 + .8 = .9.

60

We could also take the lowest score in the mastery group, which in
this case is .8.

We could also take the desired (or "standard") score required for
the demonstration of mastery, which need not necessarily be observed.
This value for the present data could be set at .70, or .71, or .82, etc.

This variety of estimated values should not be distressing, since it
allows the examiner to introduce his own requirements into the selection.
The important thing is that his choice should be close to at least one
of the logically derived estimates.

5
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The Bayesian Mathematical Model

In order to generalize the Bayesian approach to a wide variety of
applications in personnel assessment, two additions must be made to the
previously described formula. These additions are the number of trials
or itc-lis on the test (N), and Lhe number of hypothesized mastery ability.
states (''. The derivation of the general formula to meet these goals
wav originally presented by Hershman (1971):

p(MilT) =

p (Mi iti )

j=1

S-1 S p(M4 tj)
p(Mi) E j=1

i=1 S-1
p(Mi)

In this formula, p(Mijtj) equals the conditional probability of a person
in the ith mastery state getting the jth test item correct; p(Mi) is the
prior probability of the representation of the ith mastery state in the
student population (the % of students who are estimated to be in the ith
mastery state); and p(MilT) is the conditional probability of a particu-
lar student being classified as being in the ith mastery state given his
total test score. A computational example showing how the formula is
applied for three mastery states is given in the Appendix.

This formula was not used to analyze any "real" test score data.
Rather, selected values of the various parameters were systematically
manipulated in order to determine their Influence on the probability of
mastery classification. Hence, the results are from A computer simula-
tion of idealized data and should serve to emphasize the relative effects
of each of the parameters.

The two parameters that estimate the quality of the examinee popu-
lation, the prior probability of selecting a master from the population,
and the conditional probability of a known master and of a known non-
master getting a randomly selected item correct, have already been dis-
cussed. Basically, p(M1) reflects the proportion of vasters in aigroup
of examinees (and the level of training), whereas p(1011) and p(1/M2)
will be high if the test is easy and lower if the test is difficult. The
ideal criterion referenced test should provide a high probability for the
former, and low probability for the latter.

Two other parameters, the minimal passing standard (the per cent of
all the items that were answered correctly) and the test length are
interrelated. By way of analogy, consider.the minimal passing standard
for deciding that a coin is biased to be 70%. That is, if heads (or
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tails, for that matter) come up on 70% of Ole tosses, we would evaluate
the coin as being unfair. Note that the 70% figure is arbitrary. We
could have set the standard at 65%, or 75%, or 80%, etc. Now how many
tosses (test items) do we want to observe? 10? 50? 100? 1,000? If
we observe 7 heads out of ten tosses, and 700 heads out of 1,000 tosses,
does the probability of the fairness of the coin remain the same? It
should be intuitively obvious (and it can be easily demonstrAted by means
of the binomial distribution) that the minimal passing standard interacts
with test length. The probability that a coin is fair uhen i heads out
of ten tosses are observed is much greater than when 700 heads out of
1,000 tosses are observed--even though the "70%" criterion was strictly
maintained! Values of 60%, 70%, and 80% correct were wsed in the current
simulation. The number of trials or items (N) took on values of 5, 10,
20, and 40.

The final parameter which was manipulated in the model is the number
of assumed mastery states. It may be overly simplistic to assume that
the world is divided into just two dichotomous and mutually exclusive
states, of mastery and nonmastery. Perhaps there are varying degrees of
mastery, ranging from "complete" to "partial" to "totally incomplete."
The present model is able to handle any number of assumed mastery states.

The model makes the following two important assumptions concerning
the nature of the test from which the data are derived: (1) The test
measures a unidimensional latent trait or unitary skill; (2) Test items
or trials are aqually difficult for a given ability. An elaboration of
the basic model can easily be made to include test items with varying
degrees of difficulty.

Changes in p(M1T) Assuming Two Mastery S. _es

The fundamental purpose of the present study was to investigate how
the probability of mastery classification changes as a function of the
simultaneous manipulation of up to four parameters (independent variables).
The scope of the stuly is not exhaustive, slace only several were used.
However, some general trends do seem to emerge as can be seeu in the
following figures.

Figures 1, 2, and 3 show the results of applying the model to a
situation in which only two mastery groups (mastery and nonmastery)
have been hypothesized. The data points represent the probability that
a trainee is a master, given (conditional upon) his total test score,
P(M1T). The curvature of each line shows how the P(M1T) changes as a
function of variations in the prior expectacion of mastery, the % cor.Tc...t
items observed, the conditional probabilie,es of both a master and a non-
master responding correctly to an item, aud the number of items comprising
the test.
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Figure 1 represents a testing situation in which_ the training was of
extremely high quality, since the proportion of masters in the trainee
population was assumed to equal 0.9. That is, p(M1) = 0.9. Figure lA
portrays the situation in which both masters and nonmasters have attained
a rather high degree of proficiency, since the probability of a master
responding correctly to any given item is 0.9, and the probability of a
nonmaster responding correctly is 0.6. If a person scored 80% on a five
item test, the probability that he is a master is approximately .91. This
probability drops to .65 if a 60% score on five items (3 out of 5 correct)
were obtained. Note that when the test length is increased to 40 items,
an 80% score (32 correct) produces a .99 probability of mastery. How-
ever, a score of 60% (24 correct) yields an essentially zero probability
of mastery. The effect of the test length variable on classification
accuracy is dramatic: if the p(MIT) had to be at least 0.5 for a person
to be called a master, then scores of 60% on a five item test would lead
to mastery classification. But a 60% score on a 40 item test would lead
to nonmastery classification.

Figura lA also illustrates the effect of "prior beliefs" on p(M1T).
Intuitively, one might suppose that the chances were much higher that a
person who obtained a score of 60% (even from a 5 item test) came from a
population whose probability of correctly answering an item was 0.6 than
from a population whose probability of answering an item correctly was
0.9. However, the relative proportions of the two groups (expressed as
prior belief in mastery and nonmastery, or '13(M1) = .9 and p(M2) = .1,
respectively) are such that the probability of a person being in the
mastery state is approximately 0.65 for a score of 3 correct (60%) on a
5 item test. Only by increasing the numbet of test items can the strong
prior bias in favor of the mastery decision be reversed. Figures 2A and
3A show what happens when prior beliefs are not so heavily biased in
favor of mastery. In neither case is the probability of being in the
mastery state above 0.5 for scores of less than 80%. But Figure lA
suggests that when prior beliefs heavily favor one group over the other,
longer length tests should be used. Otherwise, the amount of data may
not be sufficient to force a change in the originally held prior beliefs.

The elfect of chant Ag the prior beliefs concerning the proportion
of masters and nonmasters in thc examinee population while holding all
other parameters ccnstant can be seen by comparing corresponding graphs
A, B, C, and D in Figures 1, 2, and 3. As the prior beliefs approach
equiprobability (where p(M1) = p(M2) = 0.5), more items are required to
maintain a given level of confidence that a person is either a master or
nonmaster. The inability to postulate strong prior beliefs must be com-
pensated for by increasina the est length in order to maintain a constant
classification accuracy.

The effect of changing the probability of a correct response,
p(11Mi), can be seen by comparing graphs A, B, C, and D for Figures 1, 2,
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and 3. For example, the only difference between Figure lk and Figure 1B
is that the p(11M1) changes from 0.9 to 0.8, all other parameters being
held constant. (This change might reflect a lower level of required
proficiency, and hence less training, for Graph B than for A. Or perhaps
previous test results indicate that masters of the instruction respond to
items with a probability of correct response equal to 0.8 rather than 0.9.)
In any case, the effect of this small change in the p(11M1) on the p(M)T)
is readily apparent. For any test length or observed test score, the
probability of being in the mastery state is greater in Graph B than in A.
This shift is most obvious for the 70% observed correct curve. Notice
that p(M/T) on Graph A for an observed score of 70% (28 out of 40 correct)
is approximately 0.04. However, the value for p(Mtr) in Graph B for 70%
of a 40 item test correct is 0.87.

The main reason for this abrupt change from Graph A to B (in Figures
1, ", and 3) is the lowered requirement for mastery, from 0.9 to 0.8. The
prouability that "0.9 persons" score only 70% correct on long tests is
relatively low. But when masters are defined as those trainees who come
from a population with a probability of responding correctly equal to 0.8,
the probability of their scoring 70% on a long test is high. One of the
most difficult jobs for an instructional designer is to describe the
level of capability required of graduates and the level of capability
actually achieved. Comparison of these graphs indicates the magnitude of
the effect that these specifications can have on the classification of
trainees.

Graphs C and D of Figures 1, 2, and 3 further illustrate the effect
of variations in the probability of correct responses. The only differ-
ence between Graphs B and C is that the probability of a correct response
from a nonmaster decreases from 0.6 to 0.5. The effect of this decrease
in correct zesponse probability from a nonmaster is to lower the likeli-
hood of a nonmaster achieving a test score of at least 70%, which also
increases the probability that a person achieving a high % score is in
the mastery state. Finally, Graph D portrays an extreme case in which
neither masters nor nonmasters are responding at particularly high levels.
However, the level of performance for nonmasters is so low (0.4), that
even for observed scores of 60% the probability of being in the mastery
state exceeds 0.8 for all test lengths, except for 5 and 10 items in
Figure 2, and 5, 10, and 20 items in Figure 3.

Further detailed analysis of these figures is not included in this
paper. In comparing the twelve graphs against each other, note the mag-
nitude of the changes in p(M/T) when small changes have been made in the
prior beliefs, in the correct response probabilities, and in the percent
coirect observed responses. The implication is that extreme care must be
taken when specifying parameters in a Bayesian approach to testing and
decision making. If the parameters are realistic, great savings in
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testing time and expense, and increased confidence in decision making are
possible (Novick & Lewis, 1974). However, if the parameters are not
realistic, there is a very real danger of misclassifying many exan:nees.
The next section of this paper deals with an elaboration of the model to
three mastery states, thus helping to quantify sources of classification
error.

Elaboration to Three Mastery States

Figures 4, 5, 6, and 7 represent cases for which three ma9tery states
have been hypothesized. In figures 4 and 6 the probability of a correct
response for a person assumed to be in mastery state M1 equals 0.8D for
mastery state M2 this probability is 0.6, and for mastery state M3 it is
0.5. These values could correspond to the situation in which the non-
mastery group was divided in half. That is, those persons whose prob-
ability of getting any given item correct is 0.5 (comprising mastery
state M3) would need extensive retraining; whereas those whose probabil-
ity of getting any given item correct is 0.5 (comprising mastery state
M3) would need extensive retraining; whereas those whose probability is
0.6 (comprising mastery state M2) would merely need selective retraining.
People in mastery state M1 have a probability of 0.8 for making a correct
response, and may therefore be considered as "masters" who have success-
fully passed training.

For Figures 5 and 7 the corresponding probabilities of a correct
response for people in mastery states Ml, M2 and M3 are 0.9, 0.8, and
0.6, respectively. These probabilities might describe a situation in
which the mastery group was dichotomized, perhaps in an attempt to
identify those students who had achieved an exceptionally high level
of proficiency, i.e., p(11M1) = 0.9.

In Figures 4 and 5 the prior probability (or assumed proportion)
of examinees in each mastery state are: p(M1) = 0.5, p(M2) = 0.3, and
p(M3) = 0.2. In Figures 6 and 7 the corresponding prior probabilities
are 0.25, 0.50, and 0.25, respectively. The prior values in Figures 4
and 5 display a bias towards higher levels of mastery (50% of the exam-
inees are assumed to be type M1 masters), whereas the bias in Figures
6 and 7 is towards the intermediate level of mastery (50% of the exam-
inees are assumed to be type M2 masters).

A detailed analysis of Figures 4 and 5 will provide the basis for
an interpretation of Figures 6 and 7, which is an exercise left to the
reader. The three graphs labeled A, B, and C represent the probability
that an individual is in mastery state Ml, M2, and M3, respectively.

Graph A shows the probability that an individual is in mastery state

M1 given observed scores of 60%, 70%, and 80% correct on 5, 10, 20, and
40 item tests. Thus, for an observed score of 4 out of 5 correct, the
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probability that this person is in mastery state M1 is about 0.65. But
if this same person got a score of 32 out of 40 (still 80% correct), the
probability that he is an Mi master jumps to 0.98. These results are
similar to those obtained when two mastery groups were hypothesized,
cnd again illustrate the effect of increasing test length on the level
of conilnce in the mastery classification p(MIT).

The probabil'Ay of being in mastery state M2 given observed scores
is plotted in Graph B. If a person got 4 out of 5 correct, the probabil-
ity of being in state M2 is about 0.25. However, ii he got 32 out of 40
correct (still 80% correct), this probability plummets to 0.J2. Finally,
using these same test score values, Graph C shows that the probability
of being a type M3 mastar is 0.10 for 4 out of 5 correct, and nearly t;ero
for 32 out of 40 correct. This result makes intuitive sense, because
there is ouly 20% of type 113 (non)masters in the examinee population, and
the probability of their gettin3 any item correct is only 0.50, which is
a long way from SO% observed correct.

Notice that for any given test length and percent correct, the sum
of the probabilities of being in states Ml, M2, and M3 equals 1.0. Com-
parison of Graphs A, B, and C shows that when either 70% or 80% of the
items for any test length are correctly answered, the probability of being
in state M1 is greater than the probability cf being in either state M2
or M3. That is, both the 70% and 80% curves are higher in Graph A than
in either Graph B or C. For an observed score of 60% the probability of
being in state M2 is greater than for M1 or M3. The probability of being
in state M3 is rather low for all values of test length and percent cor-
rect observed in this particular example.

In Figure 5 the interrelationship between test length and three
hypothesized mastery states becomes even more apparent. For example,
Graph A shows that the probability of being in state M1 for 80% correct
on a 5 item test is about 0.48. The probability of being in state M2
(shown in Graph B) for 80% correct on a five item test is about 0.36.
There is thus a greater chance that a person whose score is 4 out of
is in M1 (p(MlIT) = 0.48), instead of 142 (p(142IT) = 0.36) or 143 (p(1431T)
= 0.16). However, if a score of 80% correct were observed on a 40 item
test, the graphs indicate that a much different decision would be
priate. In this case, p(MlIT) equals 0.21, p(M2IT) = .78, and p(M3 T) =
0.01. Hence, people scoring 32 out of 40 correc should be classified
as type M2 masters. Also note that a scor, of 60% for any test length
implies that these people should be placed in the M3 state.

For the data used in Figure 5, the probability of finding M1 type
masters is overall quite low. Instead, for the levels of achievement
demonstrated by obtained scores of 60%, 70%, or 80,it is more likely
that such scores were produced by people in mastery states M2 (p(1/1.12)=
0.8) and M3 (p(111.13) = 0.6).
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Test Length. and Hisclassificaticn Error

One of the most important questions that must be answered in design-
ing a training evaluation program is: What is the probability of falsely
classifying a person on the basis of a given observed score? It is also
possible to turn the.question arourd and ask: How long must a test be,
and what score is required for classification decisions to be made with
some specified lower limit of misclassification?

Figures 8 and 9 demonstrate how the Bayesian model can be used to
answer the above questions. Assuming that the prior and conditional
probabili,:ies are realistic and fixed, the important variables are then
test length and score. Suppose that p(M1) = 0.9, p(M2) = 0.1,
p(11141) = 0.9, and p(1 M2) = 0.6 as in Figure 3. In this example, the
prior belief that an untested trainee is a master is very high, p(M1) =
0.9. A reasonable question might therefore be: What score'must be
observed such that a nonmastery decision can be made with at least 90%
confidence? In other words, what data are required to force a reversal
in the prior belief?

To be 90% confident of a nonmastery decision, p M2/T) must be equal
to least 0.90. Since the sum of p(Ml/T) and p(M2/T) equals 1.0,
p(M1 T) must therefore not be greater than 0.10. Referring to Figure 8,
a horizontal line crossing the ordinate at 0.10 can be drawn. This line
crosses the curve for a five item test at a point corresponding to 26%
correct. The next lowest possible test score is one correct (20%), so
the decision rule is that all persons scoring one correct or less should
be considered nonmasters. The point on the ordinate corresponding to
20% correct on the five item test is about 0.05. Hence, the final
decision rule states that nonmastery decisions based on an observed
score of one correct out of five can be made with 95% confidence (1.00
- 0.05 = 0.95). For observed scores lower than the cutoff score the
confidence in making a correct decision must increase. Continuing with
the present example, the (pM1IT) if zero correct are observed is vir-
tually equal to zero. Hence, those persons who get no items right may
be classified as M2 tyce nonmasters with nearly '100% confidence.

A similar analysis applied to the 40 ite test curve indicates that
the cutting score should be about 73% correr-. The next lowest possible
score to 73% is 70%, which yields exactly 23 correct out of 40 itemq.
The probability of mastery given an observed score of 28 correct i..., about

0.04. At such a low value of p(MliT) the chances for misclassification
using a five item test and a 40 item test are almost the same. However,
the observed percent correct at which the nonmastery decision is made for
the two tests is 20% on the five item test and 70% on the 40 item test.
Superficially, two tests of different lengths would seem to produce the
same decision outcome, and that longer tests may not really be necessary
for reducing classification error.
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In order to appreciate the benefits gained by using longer length
tests, the entire curve must be examined. Note that at 80% correct the
five item test yields p(MlIT) to equal 0.92. This result suggests that,
on the average, 8% of the mastery decisions will be in error. For the
40 item test, the probability of mastery given 80% correct is about 0.99.
That is, there is only about 1% chance of misclassification error. A
test that distinguishes sharply between masters and nonmasters is one in
which the probability of mastery is close to either 0.0 or 1.00 for most
obtained scores. On such tests there is only a small region in which
classification error is large. For example, in Figure 8 for the 40 item
test, the region where p(Ml/T) is greater than 0.1 and less than 0.9
extends from 71% to 77% correct. This means that the probabiLH' of
misclassifying a person will'exceed 0.10 only when observed scores range
from 71% to 77% correct. In contrast, the region of the five item test
carve for which p(MlIT) is greater than 0.10 and less than 0.9 extends
from about 26% to about 79%. Bence, there is a much larger region of the
curve for which the probability of misclassification exceeds 0.10.
Obviously, if classification accuracy is to be maximized over the entire
range of possible test scores, then longer tests are required. Ideally,

a very long test would produce a step function, for which all values of
possible scores approach either 0.0 or 1.0.

Figure 9 can be analyzed in a manner similar to that for Figure 8.
However, Figure 9 has one outstanding characteristic that merits special
attention. If nonmastery decisions must be made with 90% confidence,
and a horizontal line at p(MIT) = 0.1 is drawn, the line does not inter-
sect the curve for the five item test. This means that it is not Dossi-
ble to classify a nonmaster with 90% confidence if a five item test is
used, given the parameters used in Figure 9. If resource or time con-
straints are such that no more than five items may be given, and if the
parameter values used in Figure 9 are realistic, and if 90% confidence
for mastery decisions are required, then there is no reason to test.
Testing is irrelevant because no matter what score is observed, including
zero correct, the decision rule compels a mastery decision to be made.
In fact, for the present values, the probability of mastery given zero
correct, is equal to 0.21. This simply means that if persons obtaining
a score of zero are classified as nonmasters, 21% of them will be mis-
classified, on the average.

Conclusions

The implications of the results from this simulation experiment

stress the practical importance of test length, criterion scores, and

accurate estimates of examinee quality in making optimal mastery classi-

fications. If the assumptions of the model have been met, and if accu-

rate parametei estimates have been made, then a Bayesian method is optimal

in.the sense of providing more accurate estimates of mastery classification

with the least number of test items.
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In the typical situation for personnel assessment, the examiner will
have some degree of control over the values of the parameters. His esti-
mates of the prior probability of mastery will depend upon the goodness
of the information he can obtain about previous examinee populationp'
scores. His estimates of the conditional probabilities can be made by
several equally justifiable and logical procedures. In any case,

informed subjective judgment is absolutely essential.

The criterion for minimal mastery, expressed as some percent correct
of the total number of test items, is explicitly under the examiner's
control. In some testing situations, he may deem 70% correct as a mini-
mal passing score, whereas when more critcal skills are involved, he may
want to observe at least 80% correct before calling an examinee a master.
But as the model demonstrates, test length interacts with per correct
required for "mastery" decisions. Specifically, as test, length increases,
classification accuracy increases, even when the same percent correct
is maintained. In performance-based tests for example, where the cost of
each item could be very high (such as field artillery or tank gunnery),
the examiner is obliged to use the minfmum number of trials, and so the
minimal percent correct mastery criterion should be increased accordingly.
Finally, the model has demonstrated that testing may be irrelevant in
making mastery classification decisions if test length does not exceed
some minimal number of items.

Appendix: A Computational Example for Three Mastery States

The following example illustrates the computations necessary for
processing data with the Bayesian model. The values chosen for this
example correspond to Figure 4. Assume that there are three states of
mastery, and unequal prior probabilities for these three states. The
educational decision-maker must provide estimates for the prior proba-
bilities of master, p(Mi). For this example let us assume the values to
be: p(Ml) = .5; p(M2) = .3; and p(M3) = .2. He must also provide
estimates for the conditional probability of getting any given test item
right, given each mastery state. The following values will be used as
the conditional probability of getting an item right given a mastery state:
p(ltHl) = .8; p(11M2) = .6; p(1/113) = .5. The conditional probabilities
of getting an item wrong given a mastery state are: p(O/Ml) = .2;
p(01M2) = .4; and p(01M3) = .5.

First we need to calculate the probability that an item is answered
correctly. For the overall population,

p(tj = correct) =E p(Hi)p(tj = correct/Mi) = (.5)(.8) +
1=1

(.3)(.6) + (.2)(:5) = .68.

14
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Likewise,

p(tj = wrong) = E p(Mi)p(tj = wronglMi) = (.5)(.2) +
i=1

(.3)(.4) + (.2)(.5) = .32.

We also need to obtain the set of conditional probabilities for the
different mastery states given that an individual item was responded to
either correctly cr wrt,rgly The general equation is:

p(Miltj) = p(Mi)p(tj1Mi)
p.(tj)

Substituting %he above values yields: p(Ml(tj = correct) = (.5)(.8)
.68 = .588; p(M2/tj = correct) = (.3)(.6) = .68 = .265; and p(M3itj =

corrqct) = (.2)(.5) 4 .68 = .147. (Note that the sum equals 1.0.) Finally,

p(Ml/tj = wrong) = (.5)(.2) .32 = .3125; p(M2tj = wrong) = (.3)(.4) =

.32 = .375 and p(M3/tj = wrong) = (.2)(.5) = .3 = .3125. If 6 items were
answered correctly on a 10 item criteri.on-referenced test, the following

it p(Miltj) values result: M1 = 3.9 x 10-4;

j=1 M2 = 6.8 x 10-6;
M3 = 9.6 x 10-8.

Finally, the general Bayesian formula yields the conditional proba-
bility for each mastery state given the total test score. For example,

(3.9 x 10-4)
p(MilT) .272.

(.5)9 L(3.9 x 10-4)+(6.8 x 10-1) 4.7076 x 10-T-8

'(.5)9 (.3)9 (.2)9

Similar calculations yield p(M2fT) = .473 and p(M3jT) = .254.
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